The following linear programming problem has been solved by The Management Scientist. Use the output below to determine the rangeof optimality for variable X3.
MAX 25X1+30X2+15X3
S.T.
1) 4X1+5X2+8X3<1200
2) 9X1+15X2+3X3<1500
OPTIMAL SOLUTION
Objective Function Value = 4700.000
Variable Value Reduced Costs
X1 140.00 0.00
X2 0.000 10.00
X3 80.00 0.00
Constraint Slack/Surplus Dual Prices
1 0.000 1.000
2 0.000 2.333
OBJECTIVE COEFFICIENT RANGES
Variable Lower Limit Current Value Upper Limit
X1 19.286 25.000 45.000
X2 No Lower Limit 30.000 40.000
X3 8.333 15.000 50.000
RIGHT HAND SIDE RANGES
Constraint Lower Limit Current Value Upper Limit
1 666.667 1200.000 4000.000
2 450.000 1500.000 2700.000
a (25,45)
b (450,2700)
c (15,50)
d (8.33, 50)
e (19.29,45)
Correct, we can find the range for X3 by using the “OBJECTIVE COEFFICIENT RANGES”
Variable …
The solution answers the question below.